3,475 research outputs found

    Effect of Carthamus tinctorius L Extract on Diethylnitrosamine-Induced Liver Cirrhosis in Rats

    Get PDF
    Purpose: To explore the effects of Carthamus tinctorius L. extract (CTLE) on diethylnitrosamine (DEN)-induced liver cirrhosis in rats.Methods: CTLE was obtained by extracting the dried Carthamus tinctorius L. in water. Liver cirrhosis was induced by injecting the rats with DEN once a week for 8 weeks. Following this treatment, clinical biochemical assessments, as well as oxidative stress test and histopathological examination were performed.Results: Compared with the control group, plasma concentrations of alanine transaminase (ALT) and aspartate aminotransferase (AST) both decreased significantly (p < 0.01) after 8 weeks. The degree of liver fibrosis, cirrhosis and necrosis decreased in CTLE-treated rats. CTLE significantly inhibited malondialdehyde (MDA) and superoxide dismutases (SOD) in DEN-induced rat liver (p < 0.01) compared with control group.Conclusion: CTLE has significant inhibitory effect on diethylnitrosamine-induced liver cirrhosis in rats, which can be developed for future clinical applications.Keywords: Carthamus tinctorius L., Liver Cirrhosis, Anti-Oxidant, Apoptosis, Diethylnitrosamin

    Modelling of Glulam beams pre-stressed by compressed wood

    Get PDF
    Finite element models were, in the first time, developed to simulate the pre-stressing behaviour of Glulam beams with insertion of compressed wood blocks, which were further used to simulate the structural behaviour of the pre-stressed beams subjected to subsequent destructive bending. Here, both the Glulam and compressed wood were modelled as orthotropic elasto-viscoplastic materials. The moisture-dependent, including spring back, swelling of the compressed wood block and the creep of the Glulam were considered in the modelling. The models developed were validated against the corresponding experimental results, with reasonably good correlation in terms of the free swelling, the precamber, initial stress state of the Glulam beams reinforced and load-deflection relationships. With validated models, further studies were then undertaken to investigate effects of the thickness, depth and spacing of compressed wood blocks on the precamber, initial bending stiffness and ultimate load carrying capacity of the beams pre-stressed. The results indicate that there are significant enhancements on the precamber (up to 1/288 of the deflection/span ratio), the initial bending stiffness (up to 23.8%) and the ultimate load carrying capacity (up to 10.4%

    Lateral impact response of end-plate beam-column connections

    Get PDF
    The behaviour of different steel beam to column connections has been studied intensively against static and seismic loading regimes. However, there is a lack of knowledge on the response of such connections against impact and blast. In order to close this gap, the most common connections with partially depth end plate (PDEPCs), as a simple connection, and flush plate (FPCs), as a moment resisting connection, were investigated under both quasi-static and impact loads. Here, eight specimens were tested under those loading conditions with different locations. 3 D finite element models were then developed and validated against the corresponding experimental results. Full range analyses of the connection responses under both loading regimes are then carried out using the validated FE models to examine the internal forces of the connections. Finally, the results of full analyses under both loading regimes were compared and dynamic increase factors (DIF) were proposed to assist predicting the impact response of these types of connections using the static analysis. The results showed that failure modes under both loading regimes were similar, but with the larger fracture on the PDEPC under quasi-static load than that under lateral impact. The DIFs were found to be between 1.02 and 1.21, 1.03 and 1.36 and 1.22 and 1.45 based on the bolt tensile strength, axial resistance and bending resistance of the connections, respectively. However, if based on the energy approach, the range of DIFs was recorded between 1.25 and 1.38 using the experimental results and between 1.19 and 1.34 using the finite element analysis results

    Magnetic flux penetration in polycrystalline SmFeO0.75F0.2As

    Full text link
    The recently discovered Fe-As superconducting materials which show high potential ability to carry current due to their low anisotropy have attracted a great number of attentions to understand their superconductivity mechanism and explore their applications. This paper presents a method to synthesis SmFeO0.75F0.20As polycrystalline by hot press in detail. The magnetization at different temperatures and applied fields obtained by a superconducting quantum interference device are also discussed. In addition, the local magnetization process is presented by magneto-optical imaging technique at the conditions of zero-field-cooling and field-cooling. It is found that the collective magnetization process of the newly discovered Fe-As superconductors is very similar to that of high-Tc cuprates. For instance, the Fe-As superconductors and high-Tc cuprates have the same magnetization features due to strong pining and intergrain weak link. The global supercurrent is significantly lower than local grain supercurrent due to the weak line between the grains

    The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated

    Full text link
    We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2 microspheres as superlenses to create a virtual image of the object in near field. The magnified virtual image greatly overcomes the diffraction limit. We are able to resolve clearly 50-nm objects under a standard white light source in both transmission and reflection modes. The resolution achieved for white light opens a new opportunity to image viruses, DNA and molecules in real time

    Robust optimization in HTS cable based on design for six sigma

    Full text link
    The nonuniform ac current distribution among the multilayer conductors in a high-temperature superconducting (HTS) cable reduces the current capacity and increases the ac loss. Various numerical simulation techniques and optimization methods have been applied in structural optimization of HTS cables. While the existence of fluctuation in design variables or operation conditions has a great influence on the cable quality, in order to eliminate the effects of parameter perturbations in design and to improve the design efficiency, a robust optimization method based on design for six sigma (DFSS) is presented in this paper. The optimization results show that the proposed optimization procedure can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality, comparing with those by using the particle swarm optimization. © 2008 IEEE

    Measurement of soft magnetic composite material using an improved 3-D tester with flexible excitation coils and novel sensing coils

    Full text link
    In this paper, accurate measurement of three dimensional (3-D) magnetic properties of soft magnetic composite (SMC) material is carried out by using an improved 3-D tester with adjustable excitation coils and novel sensing coils attached upon the surface of the SMC specimen. Comparing with the conventional 3-D tester operating at 50 Hz, the improved 3-D tester enables measurements over wide frequency range from 2 Hz to 1000 Hz. The relationships between the B vector and H vector are measured under both alternating and rotating flux conditions, and the core loss features are analyzed. These experimental results are crucial for designing new SMC electrical machines, which are expected to operate at 200 Hz or above. © 2006 IEEE

    Current distribution analysis for high temperature superconducting cable considering hysteresis characteristics

    Full text link
    This paper presents a hysteresis model for Type-II high temperature superconductor (HTS) by using simplified Preisach Model, in which the Preisach distribution function μ-kα, β) is determined only based on the B-H limiting loop. The nonlinear dynamic circuit model of the superconductor is established. In the circuit model, the hysteresis inductance and hysteresis loss described by using simplified Preisach Model are deduced. Applying the hysteresis circuit model, the currents flowing in different superconductor layers of high temperature superconducting cable are simulated, as well as the hysteresis loss of the superconducting cable. The simulation results are verified by comparison with the data recorded in literatures. Finally, the influences of hysteresis on superconducting cable are analyzed and discussed. © 2010 - IOS Press and the authors. All rights reserved

    Robust optimization of multilayer conductors of HTS AC cable using PSO and perturbation analysis

    Full text link
    For a High Temperature Superconducting (HTS) cable, a non-uniform AC current distribution among the multilayer conductors gives rise to increased AC losses. To get a uniform current distribution among the multilayer conductors, a constrained optimization model is constructed with continuous and discrete variables, such as the winding angle, radius and the winding direction of each layer. Under the constraints of the mechanical properties and critical current of the tape, the Particle Swarm Optimization (PSO) algorithm is employed for structural parameter optimization in both warm and cold dielectric type HTS cables. A uniform current distribution among layers is realized by optimizing the structural parameters. The perturbation analysis is employed to evaluate the parameters after optimization. It is found that the robust stabilizations are different among the various optimal results. The PSO is proved to be a more powerful tool than the Genetic Algorithm (GA) for structural parameter optimization. © 2006 IEEE
    corecore